Transmission problem for odd-order differential equations with two time variables and a varying direction of evolution


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The solvability of a boundary value problem for the differential equation \(h\left( x \right){u_t} + {\left( { - 1} \right)^m}\frac{{{\partial ^{2m + 1}}u}}{{\partial {a^{2m + 1}}}} - {u_{xx}} = f\left( {x,t,a} \right)\) is studied in the case where h(x) has a jump discontinuity and reverses its sign on passing through the discontinuity point. Existence and uniqueness theorems are proved in the case of solutions having all Sobolev generalized derivatives involved in the equation.

作者简介

A. Kozhanov

Sobolev Institute of Mathematics, Siberian Branch

编辑信件的主要联系方式.
Email: kozhanov@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

S. Potapova

Research Institute of Mathematics

Email: kozhanov@math.nsc.ru
俄罗斯联邦, Yakutsk, 677000

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017