Complete Radon–Kipriyanov Transform: Some Properties


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The even Radon–Kipriyanov transform (Kγ-transform) is suitable for studying problems with the Bessel singular differential operator \({{B}_{{{{\gamma }_{i}}}}} = \frac{{{{\partial }^{2}}}}{{\partial x_{i}^{2}}} + \frac{{{{\gamma }_{i}}}}{{{{x}_{i}}~}}\frac{\partial }{{\partial {{x}_{i}}}},{{\gamma }_{i}} > 0\). In this work, the odd Radon–Kipriyanov transform and the complete Radon–Kipriyanov transform are introduced to study more general equations containing odd B-derivatives \(\frac{\partial }{{\partial {{x}_{i}}}}~B_{{{{\gamma }_{i}}}}^{k},~~k = 0, 1, 2,~ \ldots \) (in particular, gradients of functions). Formulas of the Kγ-transforms of singular differential operators are given. Based on the Bessel transforms introduced by B.M. Levitan and the odd Bessel transform introduced by I.A. Kipriyanov and V.V. Katrakhov, a relationship of the complete Radon–Kipriyanov transform with the Fourier transform and the mixed Fourier–Levitan–Kipriyanov–Katrakhov transform is deduced. An analogue of Helgason’s support theorem and an analog of the Paley–Wiener theorem are given.

作者简介

L. Lyakhov

Voronezh State University

编辑信件的主要联系方式.
Email: levnlya@mail.ru
俄罗斯联邦, Voronezh, 394018

M. Lapshina

Lipetsk State Pedagogical University

编辑信件的主要联系方式.
Email: marina.lapsh@yandex.ru
俄罗斯联邦, Lipetsk, 398020

S. Roshchupkin

Bunin Yelets State University

编辑信件的主要联系方式.
Email: roshupkinsa@mail.ru
俄罗斯联邦, Yelets, Lipetsk Region, 399770

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019