Complete Radon–Kipriyanov Transform: Some Properties


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The even Radon–Kipriyanov transform (Kγ-transform) is suitable for studying problems with the Bessel singular differential operator \({{B}_{{{{\gamma }_{i}}}}} = \frac{{{{\partial }^{2}}}}{{\partial x_{i}^{2}}} + \frac{{{{\gamma }_{i}}}}{{{{x}_{i}}~}}\frac{\partial }{{\partial {{x}_{i}}}},{{\gamma }_{i}} > 0\). In this work, the odd Radon–Kipriyanov transform and the complete Radon–Kipriyanov transform are introduced to study more general equations containing odd B-derivatives \(\frac{\partial }{{\partial {{x}_{i}}}}~B_{{{{\gamma }_{i}}}}^{k},~~k = 0, 1, 2,~ \ldots \) (in particular, gradients of functions). Formulas of the Kγ-transforms of singular differential operators are given. Based on the Bessel transforms introduced by B.M. Levitan and the odd Bessel transform introduced by I.A. Kipriyanov and V.V. Katrakhov, a relationship of the complete Radon–Kipriyanov transform with the Fourier transform and the mixed Fourier–Levitan–Kipriyanov–Katrakhov transform is deduced. An analogue of Helgason’s support theorem and an analog of the Paley–Wiener theorem are given.

Sobre autores

L. Lyakhov

Voronezh State University

Autor responsável pela correspondência
Email: levnlya@mail.ru
Rússia, Voronezh, 394018

M. Lapshina

Lipetsk State Pedagogical University

Autor responsável pela correspondência
Email: marina.lapsh@yandex.ru
Rússia, Lipetsk, 398020

S. Roshchupkin

Bunin Yelets State University

Autor responsável pela correspondência
Email: roshupkinsa@mail.ru
Rússia, Yelets, Lipetsk Region, 399770

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019