On the Continuous Dependence of the Solution of a Boundary Value Problem on Boundary Conditions: Elements of P-Regularity Theory


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The existence of a continuous dependence of the solution to a boundary value problem on a parameter is studied. In the presence of the p-regularity property, it is proved that there exists a solution depending continuously on a small parameter. The main result of this paper is based on theorems representing different versions of the implicit function theorem. In the case of degenerate mappings, the theorems are used to analyze a boundary value problem with a small parameter. In the case of absolute degeneration, a p-factor operator is found. The concept of the p-kernel of an operator and left and right inverse operators are introduced. Theorems are formulated that are special versions of the generalized Lyusternik theorem and the implicit function theorem in the degenerate case. An implicit function theorem is formulated and proved in the case of a nontrivial kernel.

Об авторах

B. Medak

University of Siedlce, Faculty of Sciences

Email: tret@ap.siedlce.pl
Польша, Siedlce, 08-110

A. Tret’yakov

University of Siedlce, Faculty of Sciences; Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control”, Russian Academy
of Sciences; System Research Institute, Polish Academy of Sciences

Автор, ответственный за переписку.
Email: tret@ap.siedlce.pl
Польша, Siedlce, 08-110; Moscow, 119333; Warsaw, 01-447

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).