Zero–One Laws for Sentences with k Variables


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The k-variable fragment of first-order logic on graphs is considered. It is proved that, for \(\alpha \leqslant \frac{1}{{k - 1}},\) the random graph \(G(n,{{n}^{{ - \alpha }}})\) obeys the zero–one law with respect to this logic. Moreover, for every \(\varepsilon > 0\), there exists \(\alpha \in \left( {\frac{1}{{k - 1}},\frac{1}{{k - 1}} + \varepsilon } \right)\) such that \(G(n,{{n}^{{ - \alpha }}})\) does not obey the law.

About the authors

M. E. Zhukovskii

Moscow Institute of Physics and Technology (State University)

Author for correspondence.
Email: zhukmax@gmail.com
Russian Federation, Dolgoprudnyi, Moscow oblast, 141700

A. S. Razafimahatratra

University of Regina

Author for correspondence.
Email: andriahermanana@aims.edu.gh
Canada, Regina Saskatchewan

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pleiades Publishing, Ltd.