Zero–One Laws for Sentences with k Variables
- Authors: Zhukovskii M.E.1, Razafimahatratra A.S.2
-
Affiliations:
- Moscow Institute of Physics and Technology (State University)
- University of Regina
- Issue: Vol 99, No 3 (2019)
- Pages: 270-272
- Section: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225674
- DOI: https://doi.org/10.1134/S1064562419030098
- ID: 225674
Cite item
Abstract
The k-variable fragment of first-order logic on graphs is considered. It is proved that, for \(\alpha \leqslant \frac{1}{{k - 1}},\) the random graph \(G(n,{{n}^{{ - \alpha }}})\) obeys the zero–one law with respect to this logic. Moreover, for every \(\varepsilon > 0\), there exists \(\alpha \in \left( {\frac{1}{{k - 1}},\frac{1}{{k - 1}} + \varepsilon } \right)\) such that \(G(n,{{n}^{{ - \alpha }}})\) does not obey the law.
About the authors
M. E. Zhukovskii
Moscow Institute of Physics and Technology (State University)
Author for correspondence.
Email: zhukmax@gmail.com
Russian Federation, Dolgoprudnyi, Moscow oblast, 141700
A. S. Razafimahatratra
University of Regina
Author for correspondence.
Email: andriahermanana@aims.edu.gh
Canada, Regina Saskatchewan
Supplementary files
