Zero–One Laws for Sentences with k Variables
- 作者: Zhukovskii M.E.1, Razafimahatratra A.S.2
-
隶属关系:
- Moscow Institute of Physics and Technology (State University)
- University of Regina
- 期: 卷 99, 编号 3 (2019)
- 页面: 270-272
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225674
- DOI: https://doi.org/10.1134/S1064562419030098
- ID: 225674
如何引用文章
详细
The k-variable fragment of first-order logic on graphs is considered. It is proved that, for \(\alpha \leqslant \frac{1}{{k - 1}},\) the random graph \(G(n,{{n}^{{ - \alpha }}})\) obeys the zero–one law with respect to this logic. Moreover, for every \(\varepsilon > 0\), there exists \(\alpha \in \left( {\frac{1}{{k - 1}},\frac{1}{{k - 1}} + \varepsilon } \right)\) such that \(G(n,{{n}^{{ - \alpha }}})\) does not obey the law.
作者简介
M. Zhukovskii
Moscow Institute of Physics and Technology (State University)
编辑信件的主要联系方式.
Email: zhukmax@gmail.com
俄罗斯联邦, Dolgoprudnyi, Moscow oblast, 141700
A. Razafimahatratra
University of Regina
编辑信件的主要联系方式.
Email: andriahermanana@aims.edu.gh
加拿大, Regina Saskatchewan
补充文件
