Zero–One Laws for Sentences with k Variables


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The k-variable fragment of first-order logic on graphs is considered. It is proved that, for \(\alpha \leqslant \frac{1}{{k - 1}},\) the random graph \(G(n,{{n}^{{ - \alpha }}})\) obeys the zero–one law with respect to this logic. Moreover, for every \(\varepsilon > 0\), there exists \(\alpha \in \left( {\frac{1}{{k - 1}},\frac{1}{{k - 1}} + \varepsilon } \right)\) such that \(G(n,{{n}^{{ - \alpha }}})\) does not obey the law.

作者简介

M. Zhukovskii

Moscow Institute of Physics and Technology (State University)

编辑信件的主要联系方式.
Email: zhukmax@gmail.com
俄罗斯联邦, Dolgoprudnyi, Moscow oblast, 141700

A. Razafimahatratra

University of Regina

编辑信件的主要联系方式.
Email: andriahermanana@aims.edu.gh
加拿大, Regina Saskatchewan

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019