High-Accuracy Calculation of Eigenvalues of the Laplacian in an Ellipse (with Neumann Boundary Condition)


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

A numerical technique for solving the eigenvalue problem for the Laplacian in an ellipse is described. The results are based on K.I. Babenko’s ideas. In elliptic coordinates, the variables in the Laplace equation for an ellipse are separated and the problem of calculating the eigenvalues is reduced to the study of Mathieu functions. The integral in the variational principle is computed using a global quadrature rule. The minimization of a quadratic functional is reduced to the minimization of a quadratic form, which leads to an algebraic eigenvalue problem.

Об авторах

S. Algazin

Ishlinsky Institute for Problems in Mechanics,
Russian Academy of Sciences

Автор, ответственный за переписку.
Email: algazinsd@mail.ru
Россия, Moscow, 119526

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).