High-Accuracy Calculation of Eigenvalues of the Laplacian in an Ellipse (with Neumann Boundary Condition)
- Авторы: Algazin S.D.1
-
Учреждения:
- Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences
- Выпуск: Том 99, № 3 (2019)
- Страницы: 260-262
- Раздел: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225671
- DOI: https://doi.org/10.1134/S1064562419030050
- ID: 225671
Цитировать
Аннотация
A numerical technique for solving the eigenvalue problem for the Laplacian in an ellipse is described. The results are based on K.I. Babenko’s ideas. In elliptic coordinates, the variables in the Laplace equation for an ellipse are separated and the problem of calculating the eigenvalues is reduced to the study of Mathieu functions. The integral in the variational principle is computed using a global quadrature rule. The minimization of a quadratic functional is reduced to the minimization of a quadratic form, which leads to an algebraic eigenvalue problem.
Об авторах
S. Algazin
Ishlinsky Institute for Problems in Mechanics,Russian Academy of Sciences
Автор, ответственный за переписку.
Email: algazinsd@mail.ru
Россия, Moscow, 119526
Дополнительные файлы
