High-Accuracy Calculation of Eigenvalues of the Laplacian in an Ellipse (with Neumann Boundary Condition)
- Авторлар: Algazin S.D.1
-
Мекемелер:
- Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences
- Шығарылым: Том 99, № 3 (2019)
- Беттер: 260-262
- Бөлім: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225671
- DOI: https://doi.org/10.1134/S1064562419030050
- ID: 225671
Дәйексөз келтіру
Аннотация
A numerical technique for solving the eigenvalue problem for the Laplacian in an ellipse is described. The results are based on K.I. Babenko’s ideas. In elliptic coordinates, the variables in the Laplace equation for an ellipse are separated and the problem of calculating the eigenvalues is reduced to the study of Mathieu functions. The integral in the variational principle is computed using a global quadrature rule. The minimization of a quadratic functional is reduced to the minimization of a quadratic form, which leads to an algebraic eigenvalue problem.
Авторлар туралы
S. Algazin
Ishlinsky Institute for Problems in Mechanics,Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: algazinsd@mail.ru
Ресей, Moscow, 119526
Қосымша файлдар
