Statistical Problems for the Generalized Burgers Equation: High-Intensity Noise in Waveguide Systems


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

A one-dimensional equation is presented that generalizes the Burgers equation known in the theory of waves and in turbulence models. It describes the nonlinear evolution of waves in pipes of variable cross section filled with a dissipative medium, as well as in ray tubes, if the approximation of geometric acoustics of an inhomogeneous medium is used. The generalized equation is reduced to the common Burgers equation with a dissipative parameter—the “Reynolds–Goldberg number,” depending on the coordinate. The method for solving statistical problems corresponding to specified characteristics of a noise signal at the input of the system is described. Integral expressions for exact solutions are given for the correlation function and the noise intensity spectrum experiencing nonlinear distortions during propagation in a waveguide. For waves in a dissipative medium, an approximate method of calculating statistical characteristics is given, consisting in finding an auxiliary correlation function and the subsequent nonlinear functional transformation. Solutions have a complicated form, so physical analysis of phenomena requires the numerical methods. For some correlation functions of stationary noise with initial Gaussian statistics and some waveguide systems, it is possible to obtain simple results.

Об авторах

O. Rudenko

Physics Faculty; Radiophysics Faculty; Prokhorov General Physics Institute; Schmidt Institute of Physics of the Earth; Blekinge Institute of Technology

Автор, ответственный за переписку.
Email: rudenko@acs366.phys.msu.ru
Россия, Moscow, 119991; Nizhny Novgorod; Moscow; Moscow; Karlskrona

S. Gurbatov

Radiophysics Faculty

Email: rudenko@acs366.phys.msu.ru
Россия, Nizhny Novgorod

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).