Optimized Symmetric Bicompact Scheme of the Sixth Order of Approximation with Low Dispersion for Hyperbolic Equations
- Авторы: Chikitkin A.V.1, Rogov B.V.1,2
-
Учреждения:
- Moscow Institute of Physics and Technology
- Keldysh Institute of Applied Mathematics
- Выпуск: Том 97, № 1 (2018)
- Страницы: 90-94
- Раздел: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225465
- DOI: https://doi.org/10.1134/S106456241801026X
- ID: 225465
Цитировать
Аннотация
A dispersion analysis of semidiscrete schemes from the one-parameter family of symmetric bicompact schemes of the sixth order of accuracy in space is performed. In this family, a scheme is found that has the smallest maximum phase error in the entire range of wavelengths resolvable on an integer-node grid. The maximum phase error of this optimized scheme does not exceed one-hundredth of percent. A numerical example is presented that demonstrates the ability of the bicompact scheme to adequately simulate short wave propagation on coarse grids at long times.
Об авторах
A. Chikitkin
Moscow Institute of Physics and Technology
Автор, ответственный за переписку.
Email: alexchikitkin@gmail.com
Россия, Dolgoprudnyi, Moscow oblast, 141700
B. Rogov
Moscow Institute of Physics and Technology; Keldysh Institute of Applied Mathematics
Email: alexchikitkin@gmail.com
Россия, Dolgoprudnyi, Moscow oblast, 141700; Moscow, 125047
Дополнительные файлы
