The Liouville Foliation of Nonconvex Topological Billiards


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Together with the classical plane billiards, topological billiards can be considered, where the motion occurs on a locally flat surface obtained by isometrically gluing together several plane domains along their boundaries, which are arcs of confocal quadrics. A point moves inside each of the domains along straight line segments; when it reaches the boundary of a domain, it passes to another domain. Previously, the author gave a Liouville classification of all topological billiards obtained by gluing along convex boundaries. In the present paper, all topological integrable billiards obtained by gluing along convex or nonconvex boundaries from elementary billiards bounded by arcs of confocal quadrics are classified. For some of such nonconvex topological billiards, the Fomenko–Zieschang invariants (marked molecules W*) for Liouville equivalence are calculated.

About the authors

V. V. Vedyushkina

Mechanics and Mathematics Faculty

Author for correspondence.
Email: arinir@yandex.ru
Russian Federation, Moscow, 119991

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Ltd.