Turán-type bounds for distance graphs
- Авторы: Shabanov L.E.1,2, Raigorodskii A.M.2,3,4
-
Учреждения:
- Higher School of Economics (National Research University)
- Moscow Institute of Physics and Technology (State University)
- Mechanics and Mathematics Faculty
- Institute of Mathematics and Computer Science
- Выпуск: Том 96, № 1 (2017)
- Страницы: 351-353
- Раздел: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225230
- DOI: https://doi.org/10.1134/S1064562417040135
- ID: 225230
Цитировать
Аннотация
A lower bound is obtained for the number of edges in a distance graph G in an infinitesimal plane layer ℝ2 × [0, ε]d, which relates the number of edges e(G), the number of vertices ν(G), and the independence number α(G). It is proved that \(e\left( G \right) \geqslant \frac{{19\nu \left( G \right) - 50\alpha \left( G \right)}}{3}\). This result generalizes a previous bound for distance graphs in the plane. It substantially improves Turán’s bound in the case where \(\frac{1}{5} \leqslant \frac{{\alpha \left( G \right)}}{{\nu \left( G \right)}} \leqslant \frac{2}{7}\).
Об авторах
L. Shabanov
Higher School of Economics (National Research University); Moscow Institute of Physics and Technology (State University)
Автор, ответственный за переписку.
Email: shabanovlev94@gmail.com
Россия, Moscow, 101000; Dolgoprudnyi, Moscow oblast, 141700
A. Raigorodskii
Moscow Institute of Physics and Technology (State University); Mechanics and Mathematics Faculty; Institute of Mathematics and Computer Science
Email: shabanovlev94@gmail.com
Россия, Dolgoprudnyi, Moscow oblast, 141700; Moscow, 119991; Ulan-Ude, Buryat Republic, 670000
Дополнительные файлы
