Turán-type bounds for distance graphs


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A lower bound is obtained for the number of edges in a distance graph G in an infinitesimal plane layer ℝ2 × [0, ε]d, which relates the number of edges e(G), the number of vertices ν(G), and the independence number α(G). It is proved that \(e\left( G \right) \geqslant \frac{{19\nu \left( G \right) - 50\alpha \left( G \right)}}{3}\). This result generalizes a previous bound for distance graphs in the plane. It substantially improves Turán’s bound in the case where \(\frac{1}{5} \leqslant \frac{{\alpha \left( G \right)}}{{\nu \left( G \right)}} \leqslant \frac{2}{7}\).

作者简介

L. Shabanov

Higher School of Economics (National Research University); Moscow Institute of Physics and Technology (State University)

编辑信件的主要联系方式.
Email: shabanovlev94@gmail.com
俄罗斯联邦, Moscow, 101000; Dolgoprudnyi, Moscow oblast, 141700

A. Raigorodskii

Moscow Institute of Physics and Technology (State University); Mechanics and Mathematics Faculty; Institute of Mathematics and Computer Science

Email: shabanovlev94@gmail.com
俄罗斯联邦, Dolgoprudnyi, Moscow oblast, 141700; Moscow, 119991; Ulan-Ude, Buryat Republic, 670000

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017