On the traces of Sobolev functions on Lipschitz surfaces
- 作者: Romanov A.S.1
-
隶属关系:
- Sobolev Institute of Mathematics, Siberian Branch
- 期: 卷 95, 编号 3 (2017)
- 页面: 243-246
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225069
- DOI: https://doi.org/10.1134/S1064562417030127
- ID: 225069
如何引用文章
详细
Functions from the Sobolev spaces Wp1(Q) are considered on a unit cube Q ⊂ Rn, and the properties of their traces on Lipschitz surfaces are examined. The relation is found between the Hölder exponent α and the Hausdorff dimension of the family of poor k-dimensional planes Γ on which the traces do not belong to Cα(Γ). For the corresponding families of poor k-dimensional Lipschitz surfaces, estimates in terms of p-modules are obtained.
作者简介
A. Romanov
Sobolev Institute of Mathematics, Siberian Branch
编辑信件的主要联系方式.
Email: asrom@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090
补充文件
