On the traces of Sobolev functions on Lipschitz surfaces


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Functions from the Sobolev spaces Wp1(Q) are considered on a unit cube QRn, and the properties of their traces on Lipschitz surfaces are examined. The relation is found between the Hölder exponent α and the Hausdorff dimension of the family of poor k-dimensional planes Γ on which the traces do not belong to Cα(Γ). For the corresponding families of poor k-dimensional Lipschitz surfaces, estimates in terms of p-modules are obtained.

作者简介

A. Romanov

Sobolev Institute of Mathematics, Siberian Branch

编辑信件的主要联系方式.
Email: asrom@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017