On the traces of Sobolev functions on Lipschitz surfaces
- Авторлар: Romanov A.S.1
-
Мекемелер:
- Sobolev Institute of Mathematics, Siberian Branch
- Шығарылым: Том 95, № 3 (2017)
- Беттер: 243-246
- Бөлім: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225069
- DOI: https://doi.org/10.1134/S1064562417030127
- ID: 225069
Дәйексөз келтіру
Аннотация
Functions from the Sobolev spaces Wp1(Q) are considered on a unit cube Q ⊂ Rn, and the properties of their traces on Lipschitz surfaces are examined. The relation is found between the Hölder exponent α and the Hausdorff dimension of the family of poor k-dimensional planes Γ on which the traces do not belong to Cα(Γ). For the corresponding families of poor k-dimensional Lipschitz surfaces, estimates in terms of p-modules are obtained.
Авторлар туралы
A. Romanov
Sobolev Institute of Mathematics, Siberian Branch
Хат алмасуға жауапты Автор.
Email: asrom@math.nsc.ru
Ресей, Novosibirsk, 630090
Қосымша файлдар
