Embedding of Sobolev spaces with limit exponent revisited
- Authors: Besov O.V.1
 - 
							Affiliations: 
							
- Steklov Mathematical Institute
 
 - Issue: Vol 94, No 3 (2016)
 - Pages: 684-687
 - Section: Mathematics
 - URL: https://journals.rcsi.science/1064-5624/article/view/224607
 - DOI: https://doi.org/10.1134/S1064562416060260
 - ID: 224607
 
Cite item
Abstract
An embedding of the Sobolev spaces Wps (ℝn) in Lizorkin-type spaces of locally integrable functions of smoothness zero is obtained; a similar assertion for Riesz and Bessel potentials is presented. The embedding theorem is extended to Sobolev spaces on irregular domains in n-dimensional Euclidean space. The statement of the theorem depends on geometric parameters of the domain of functions.
About the authors
O. V. Besov
Steklov Mathematical Institute
							Author for correspondence.
							Email: besov@mi.ras.ru
				                					                																			                												                	Russian Federation, 							ul. Gubkina 8, Moscow, 119991						
Supplementary files
				
			
					
						
						
						
						
				