On the rank of odd hyper-quasi-polynomials
- 作者: Bykovskii V.A.1
-
隶属关系:
- Khabarovsk Branch of Institute of Applied Mathematics, Far East Branch
- 期: 卷 94, 编号 2 (2016)
- 页面: 527-528
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/224245
- DOI: https://doi.org/10.1134/S1064562416050124
- ID: 224245
如何引用文章
详细
Given any nonzero entire function g: ℂ → ℂ, the complex linear space F(g) consists of all entire functions f decomposable as f(z + w)g(z - w)=φ1(z)ψ1(w)+∙∙∙+ φn(z)ψn(w) for some φ1, ψ1, …, φn, ψn: ℂ → ℂ. The rank of f with respect to g is defined as the minimum integer n for which such a decomposition is possible. It is proved that if g is an odd function, then the rank any function in F(g) is even.
作者简介
V. Bykovskii
Khabarovsk Branch of Institute of Applied Mathematics, Far East Branch
编辑信件的主要联系方式.
Email: vab@iam.khv.ru
俄罗斯联邦, ul. Dzerzhinskogo 54, Khabarovsk, 680000
补充文件
