On the rank of odd hyper-quasi-polynomials
- 作者: Bykovskii V.A.1
- 
							隶属关系: 
							- Khabarovsk Branch of Institute of Applied Mathematics, Far East Branch
 
- 期: 卷 94, 编号 2 (2016)
- 页面: 527-528
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/224245
- DOI: https://doi.org/10.1134/S1064562416050124
- ID: 224245
如何引用文章
详细
Given any nonzero entire function g: ℂ → ℂ, the complex linear space F(g) consists of all entire functions f decomposable as f(z + w)g(z - w)=φ1(z)ψ1(w)+∙∙∙+ φn(z)ψn(w) for some φ1, ψ1, …, φn, ψn: ℂ → ℂ. The rank of f with respect to g is defined as the minimum integer n for which such a decomposition is possible. It is proved that if g is an odd function, then the rank any function in F(g) is even.
作者简介
V. Bykovskii
Khabarovsk Branch of Institute of Applied Mathematics, Far East Branch
							编辑信件的主要联系方式.
							Email: vab@iam.khv.ru
				                					                																			                												                	俄罗斯联邦, 							ul. Dzerzhinskogo 54, Khabarovsk, 680000						
补充文件
 
				
			 
						 
						 
					 
						 
						 
				 
  
  
  
  
  电邮这篇文章
			电邮这篇文章  开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅存取
		                                		                                        订阅存取
		                                					