On the rank of odd hyper-quasi-polynomials


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Given any nonzero entire function g: ℂ → ℂ, the complex linear space F(g) consists of all entire functions f decomposable as f(z + w)g(z - w)=φ1(z1(w)+∙∙∙+ φn(zn(w) for some φ1, ψ1, …, φn, ψn: ℂ → ℂ. The rank of f with respect to g is defined as the minimum integer n for which such a decomposition is possible. It is proved that if g is an odd function, then the rank any function in F(g) is even.

作者简介

V. Bykovskii

Khabarovsk Branch of Institute of Applied Mathematics, Far East Branch

编辑信件的主要联系方式.
Email: vab@iam.khv.ru
俄罗斯联邦, ul. Dzerzhinskogo 54, Khabarovsk, 680000

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016