🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Cyclic Generative Neural Networks for Improved Face Recognition in Nonstandard Domains


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A system of methods for improving the quality of face recognition from infrared images is described. For testing the recognition algorithm in a multidomain environment, a database of ordinary and infrared face images is collected. An algorithm based on cyclic generative neural networks is developed. This algorithm makes it possible to transform images from the color domain into the infrared domain, which significantly increases the size of the training sample. It is shown that fine-tuning the recognition algorithm using the generated infrared images improves the recognition result on the test sample.

Sobre autores

O. Grinchuk

Moscow Institute of Physics and Technology

Autor responsável pela correspondência
Email: oleg.grinchuk@phystech.edu
Rússia, Dolgoprudnyi, Moscow oblast, 141700

V. Tsurkov

Dorodnicyn Computing Center, Federal Research Center Computer Science and Control

Email: oleg.grinchuk@phystech.edu
Rússia, Moscow, 119333

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018