Optimal Nonlinear Recurrent Finite Memory Filter


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A problem of best estimation of the current values of part of the state variables of a discrete stochastic Markovian plant using measurement results is considered. To ensure that these measurements are sufficiently simply processed, it is proposed to synthesize a finite-dimensional filter that stores only the last few measurements in its state vector. The filter’s memory size is arbitrary and can be chosen as a compromise between the attained estimation accuracy and complexity of the hardware implementation of the filter. The root-mean-squarely optimal structure of the filter is represented via the respective probability distribution, a recurrent way to find this distribution is found, and the algorithm for the numerical construction of the filter by the Monte Carlo method is given. Since it is cumbersome, analytical Gaussian and linearized approximations to the proposed filter are considered. A comprehensive example to compare the accuracies of these approximations with their known analogues is shown.

Sobre autores

E. Rudenko

Moscow Aviation Institute (National Research University)

Autor responsável pela correspondência
Email: rudenkoevg@yandex.ru
Rússia, Moscow, 125993


Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies