Trading-network order formation with the help of the aggregation of specialized forecast algorithms


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The problem concerning the aggregating of the forecasts of specialized expert strategies is examined using the mathematical theory of machine learning. Expert strategies are understood as the algorithms capable of successively predicting the components of a time series in the online mode. The specialized strategies can refrain from predictions at certain time instants—they make forecasts in compliance with the application area of the specific model of an object region forming their basis. An optimal algorithm whereby the forecasts of such expert strategies are aggregated into the single forecast is proposed. The algorithmic optimality consists in that, on average, its total losses are asymptotically less than those of any active prediction strategies on a set of time instants. The uppermost estimated error of the given mixing of predictions, i.e., the regret of aggregating strategies, is determined. The errors are estimated in the worst situation where no assumptions are made about the mechanism underlying the initial data source. The proposed algorithm is tested using the real information on the commodity circulation of a trading network. The numerical results and estimates of the regret are presented.

Об авторах

V. V’yugin

Kharkevich Institute for Information Transmission Problems

Автор, ответственный за переписку.
Email: vyugin@iitp.ru
Россия, Moscow, 127051

A. Shamsutdinov

Kharkevich Institute for Information Transmission Problems

Email: vyugin@iitp.ru
Россия, Moscow, 127051

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Inc., 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).