Integral equation method in problems of electromagnetic-wave reflection from inhomogeneous interfaces between media


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Problems on reflection of a plane electromagnetic wave from various irregular interfaces between media are studied by the integral equation method in the cases of two- and three-dimensional incident electromagnetic field. The reflecting surfaces are meant as periodic transparent interfaces between two media and plane boundaries with locally inhomogeneous and transparent sections. The boundary value problems for the system of Maxwell’s equations in an infinite domain with an irregular boundary are reduced to Fredholm or singular integral equations, depending on the problem considered. Numerical algorithms for solving such integral equations are developed. Results of calculation of currents induced on inhomogeneities and characteristics of the electric field in the far zone are presented.Problems on reflection of a plane electromagnetic wave from various irregular interfaces between media are studied by the integral equation method in the cases of two- and three-dimensional incident electromagnetic field. The reflecting surfaces are meant as periodic transparent interfaces between two media and plane boundaries with locally inhomogeneous and transparent sections. The boundary value problems for the system of Maxwell’s equations in an infinite domain with an irregular boundary are reduced to Fredholm or singular integral equations, depending on the problem considered. Numerical algorithms for solving such integral equations are developed. Results of calculation of currents induced on inhomogeneities and characteristics of the electric field in the far zone are presented.

Об авторах

A. Il’inskii

Moscow State University

Автор, ответственный за переписку.
Email: celd@cs.msu.su
Россия, Moscow, 119991

T. Galishnikova

Moscow State University

Email: celd@cs.msu.su
Россия, Moscow, 119991

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Inc., 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).