Thermal stabilization of the resistive states of superconducting composites: Quasilinear approximation


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The conditions of the occurrence and development of thermal instabilities in the composite superconductor with a continuously increasing current-voltage characteristic, which is described by the power equation, have been studied. The conditions for thermal stabilization have been analyzed in the general form using dimensionless variables that keep their invariance when varying. For the local temperature disturbance, the critical energies and velocities of its irreversible propagation have been calculated. It has been proved that composites superconductors can have stable states, when the ultimate currents can be higher or lower of the conventionally preset critical current of the composite. Furthermore, superconductivity destruction at supercritical currents takes place not in the form of a stepwise transition from the superconducting to normal state, but due to the formation of thermal and electric switching waves that propagate along the composite superconductor with a constant speed. The condition for full thermal stabilization has been formulated for the superconducting composites with a power current–voltage characteristic. The results of the numerical experiments have proved that the existing theory of thermal stabilization, which assumes a stepwise superconducting–normal transition, leads to the considerable limitation of the range of the stable currents, at which a superconducting state can be kept.

Об авторах

V. Romanovskii

National Research Center Kurchatov Institute

Автор, ответственный за переписку.
Email: romanovskii@aol.com
Россия, Moscow, 123182


© Pleiades Publishing, Ltd., 2017

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах