Thermal stabilization of the resistive states of superconducting composites: Quasilinear approximation


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The conditions of the occurrence and development of thermal instabilities in the composite superconductor with a continuously increasing current-voltage characteristic, which is described by the power equation, have been studied. The conditions for thermal stabilization have been analyzed in the general form using dimensionless variables that keep their invariance when varying. For the local temperature disturbance, the critical energies and velocities of its irreversible propagation have been calculated. It has been proved that composites superconductors can have stable states, when the ultimate currents can be higher or lower of the conventionally preset critical current of the composite. Furthermore, superconductivity destruction at supercritical currents takes place not in the form of a stepwise transition from the superconducting to normal state, but due to the formation of thermal and electric switching waves that propagate along the composite superconductor with a constant speed. The condition for full thermal stabilization has been formulated for the superconducting composites with a power current–voltage characteristic. The results of the numerical experiments have proved that the existing theory of thermal stabilization, which assumes a stepwise superconducting–normal transition, leads to the considerable limitation of the range of the stable currents, at which a superconducting state can be kept.

About the authors

V. R. Romanovskii

National Research Center Kurchatov Institute

Author for correspondence.
Email: romanovskii@aol.com
Russian Federation, Moscow, 123182


Copyright (c) 2017 Pleiades Publishing, Ltd.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies