Influence of Mechanical Stretching on Adsorption Properties of Nitrogen-Doped Graphene


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This paper presents the results of quantum chemical modeling of chemisorption of atomic hydrogen and epoxy, carboxyl, and hydroxyl functional groups on nitrogen-doped graphene. It is shown that the substitutional nitrogen atom does not bind to adsorbing groups directly, but significantly increases the adsorption activity of neighboring carbon atoms. Mechanical stretching of doped graphene reduces the adsorption energy of all the aforementioned radicals. This reduction is significantly greater for the epoxy group than for the other functional groups. The results obtained confirm that, upon a sufficient stretching of a nitrogen-doped graphene sheet, the dissociation of molecular hydrogen and oxygen with subsequent precipitation of the resulting radicals onto graphene can be energetically favorable.

Sobre autores

I. Dolinskii

National Research Nuclear University MEPhI

Email: kpkatin@yandex.ru
Rússia, Moscow, 115409

K. Katin

National Research Nuclear University MEPhI; University of Crete

Autor responsável pela correspondência
Email: kpkatin@yandex.ru
Rússia, Moscow, 115409; Heraklion, 70013

K. Grishakov

National Research Nuclear University MEPhI; University of Crete

Email: kpkatin@yandex.ru
Rússia, Moscow, 115409; Heraklion, 70013

V. Prudkovskii

University of Crete; Research Institute for the Development of Scientific and Educational Potential of Youth

Email: kpkatin@yandex.ru
Grécia, Heraklion, 70013; Moscow, 119620

N. Kargin

National Research Nuclear University MEPhI

Email: kpkatin@yandex.ru
Rússia, Moscow, 115409

M. Maslov

National Research Nuclear University MEPhI; University of Crete

Email: kpkatin@yandex.ru
Rússia, Moscow, 115409; Heraklion, 70013

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018