Specific Features of the Structure and the Dielectric Properties of Sodium–Bismuth Titanate-Based Ceramics

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The phase formation, specific features, and the dielectric properties of the ceramics of compositions from the region of morphotropic interface in the (Na0.5Bi0.5)TiO3–BaTiO3 system modified by Bi(Mg0.5Ti0.5)O3 and also low-melting additions KCl, NaCl–LiF, CuO, and MnO2 that favor the control of the stoichiometry and the properties of the ceramics have been studied. The ceramics are characterized by ferroelectric phase transitions that are observed as jumps at temperatures near 400 K and maxima at Tm ~ 600 K in the temperature dependences of the dielectric permittivity. The phase transitions at ~400 K demonstrate the relaxor behavior indicating the existence of polar domains in the nonpolar matrix. An increase in the content of Bi(Mg0.5Ti0.5)O3 favor a decrease in the electrical conductivity and dielectric losses of the samples, and the relative dielectric permittivity at room temperature εrt is retained quite high, achieving the highest values εrt = 1080–1350 in the ceramics modified with KCl.

About the authors

E. D. Politova

Karpov Scientific Research Institute of Physics and Chemistry

Author for correspondence.
Email: politova@cc.nifhi.ac.ru
Russian Federation, ul. Vorontsovo Pole 10, building 3, Moscow, 105064

N. V. Golubko

Karpov Scientific Research Institute of Physics and Chemistry

Email: politova@cc.nifhi.ac.ru
Russian Federation, ul. Vorontsovo Pole 10, building 3, Moscow, 105064

G. M. Kaleva

Karpov Scientific Research Institute of Physics and Chemistry

Email: politova@cc.nifhi.ac.ru
Russian Federation, ul. Vorontsovo Pole 10, building 3, Moscow, 105064

A. V. Mosunov

Karpov Scientific Research Institute of Physics and Chemistry

Email: politova@cc.nifhi.ac.ru
Russian Federation, ul. Vorontsovo Pole 10, building 3, Moscow, 105064

N. V. Sadovskaya

Karpov Scientific Research Institute of Physics and Chemistry

Email: politova@cc.nifhi.ac.ru
Russian Federation, ul. Vorontsovo Pole 10, building 3, Moscow, 105064

D. A. Bel’kova

Moscow State University

Email: politova@cc.nifhi.ac.ru
Russian Federation, Moscow, 119991

S. Yu. Stefanovich

Karpov Scientific Research Institute of Physics and Chemistry; Moscow State University

Email: politova@cc.nifhi.ac.ru
Russian Federation, ul. Vorontsovo Pole 10, building 3, Moscow, 105064; Moscow, 119991

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Ltd.