On Hopf algebroid structure of κ-deformed Heisenberg algebra


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The (4 + 4)-dimensional κ-deformed quantum phase space as well as its (10 + 10)-dimensional covariant extension by the Lorentz sector can be described as Heisenberg doubles: the (10 + 10)-dimensional quantum phase space is the double of D = 4 κ-deformed Poincaré Hopf algebra H and the standard (4 + 4)-dimensional space is its subalgebra generated by κ-Minkowski coordinates \(\widehat {{x_\mu }}\) and corresponding commuting momenta \(\widehat {{p_\mu }}\). Every Heisenberg double appears as the total algebra of a Hopf algebroid over a base algebra which is in our case the coordinate sector. We exhibit the details of this structure, namely the corresponding right bialgebroid and the antipode map. We rely on algebraic methods of calculation in Majid–Ruegg bicrossproduct basis. The target map is derived from a formula by J.-H. Lu. The coproduct takes values in the bimodule tensor product over a base, what is expressed as the presence of coproduct gauge freedom.

作者简介

J. Lukierski

Institute for Theoretical Physics

编辑信件的主要联系方式.
Email: jerzy.lukierski@ift.uni.wroc.pl
波兰, Wroclaw

Z. Škoda

Faculty of Science

Email: jerzy.lukierski@ift.uni.wroc.pl
捷克共和国, Hradec Králové

M. Woronowicz

Institute for Theoretical Physics

Email: jerzy.lukierski@ift.uni.wroc.pl
波兰, Wroclaw

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017