On Hopf algebroid structure of κ-deformed Heisenberg algebra


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The (4 + 4)-dimensional κ-deformed quantum phase space as well as its (10 + 10)-dimensional covariant extension by the Lorentz sector can be described as Heisenberg doubles: the (10 + 10)-dimensional quantum phase space is the double of D = 4 κ-deformed Poincaré Hopf algebra H and the standard (4 + 4)-dimensional space is its subalgebra generated by κ-Minkowski coordinates \(\widehat {{x_\mu }}\) and corresponding commuting momenta \(\widehat {{p_\mu }}\). Every Heisenberg double appears as the total algebra of a Hopf algebroid over a base algebra which is in our case the coordinate sector. We exhibit the details of this structure, namely the corresponding right bialgebroid and the antipode map. We rely on algebraic methods of calculation in Majid–Ruegg bicrossproduct basis. The target map is derived from a formula by J.-H. Lu. The coproduct takes values in the bimodule tensor product over a base, what is expressed as the presence of coproduct gauge freedom.

Sobre autores

J. Lukierski

Institute for Theoretical Physics

Autor responsável pela correspondência
Email: jerzy.lukierski@ift.uni.wroc.pl
Polônia, Wroclaw

Z. Škoda

Faculty of Science

Email: jerzy.lukierski@ift.uni.wroc.pl
Tchéquia, Hradec Králové

M. Woronowicz

Institute for Theoretical Physics

Email: jerzy.lukierski@ift.uni.wroc.pl
Polônia, Wroclaw

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017