Method for Studying the Temperature Dynamics of Crystal Structures


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A new approach to the structural analysis of crystals based on diffraction data obtained in a series of experiments performed at different temperatures (i.e., to the multitemperature structural characterization) is proposed and implemented. Calculations are performed using symmetry-averaged diffraction data. The full-matrix least-squares method is applied to calculate simultaneously the composite structural model from several datasets. The main purpose of the proposed algorithm is to determine which of the refined parameters are general (temperature-stable) and which reflect the dataset individuality (i.e., change with temperature). The method is applied to determine the occupancies of mixed atomic sites in rubidium titanyl phosphate doped with zirconium, to search for the mobile atoms responsible for the ion transport in this crystal, and to study the structural evolution of the boron framework in crystals of rare-earth element dodecaborides (RB12) of several compositions.

Sobre autores

A. Dudka

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,”
Russian Academy of Sciences; Prokhorov General Physics Institute оf the Russian Academy of Sciences

Autor responsável pela correspondência
Email: dudka@crys.ras.ru
Rússia, Moscow, 119333; Moscow, 119991


Declaração de direitos autorais © Pleiades Publishing, Inc., 2019

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies