Skeletal muscle contraction in protecting joints and bones by absorbing mechanical impacts


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We have previously hypothesized that the dissipation of mechanical energy of external impact is a fundamental function of skeletal muscle in addition to its primary function to convert chemical energy into mechanical energy. In this paper, a mathematical justification of this hypothesis is presented. First, a simple mechanical model, in which the muscle is considered as a simple Hookean spring, is considered. This analysis serves as an introduction to the consideration of a biomechanical model taking into account the molecular mechanism of muscle contraction, kinetics of myosin bridges, sarcomere dynamics, and tension of muscle fibers. It is shown that a muscle behaves like a nonlinear and adaptive spring tempering the force of impact and increasing the duration of the collision. The temporal profiles of muscle reaction to the impact as functions of the levels of muscle contraction, durations of the impact front, and the time constants of myosin bridges closing, are obtained. The absorption of mechanical shock energy is achieved due to the increased viscoelasticity of the contracting skeletal muscle. Controlling the contraction level allows for the optimization of the stiffness and viscosity of the muscle necessary for the protection of the joints and bones.

作者简介

O. Rudenko

Department of Physics

编辑信件的主要联系方式.
Email: rudenko@acs366.phys.msu.ru
俄罗斯联邦, Moscow, 119991

S. Tsyuryupa

Artann Laboratories Inc.

Email: rudenko@acs366.phys.msu.ru
美国, Trenton, NJ, 08618

A. Sarvazyan

Artann Laboratories Inc.

Email: rudenko@acs366.phys.msu.ru
美国, Trenton, NJ, 08618

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016