The nature of thermoacceptors in electron-irradiated high-resistance silicon


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We have carried out an analysis of the possibility for the deep acceptor centers in silicon to participate in the formation of the thermoacceptor effect observed experimentally in a number of works, which consists in a change of conductivity from the n- to the p-type by annealing after irradiation of high-resistance silicon with electrons or neutrons. Based on the solution of the electroneutrality equation in a compensated monocrystalline silicon, we have estimated the concentration of the deep acceptor centers which are needed for obtaining p-type conductivity depending on the acceptor ionization energy and concentration of a shallow donor impurity. It is shown that deep acceptor centers (with ionization energy of up to 0.4 eV) can substantially contribute to the thermoacceptor effect in high-resistance n-type silicon prepared by floating zone melting. The concentrations of deep acceptors needed to overcompensate a sample with a low initial donor concentration (1012–1013 cm–3) are on the order of 1012–1014 cm–3 and seem to be quite achievable. Such centers can be divacancy–impurity (Fe, P) complexes with the ionization energy of up to 0.34 eV. In this case, the thermal activation of interstitial boron is also not excluded.

作者简介

S. Kobeleva

National University of Science and Technology MISiS

编辑信件的主要联系方式.
Email: kob@misis.ru
俄罗斯联邦, Leninskii pr. 4, Moscow, 119049


版权所有 © Pleiades Publishing, Ltd., 2016
##common.cookie##