The Problem of Selfish Parking
- Авторлар: Ananjevskii S.M.1, Kryukov N.A.1
-
Мекемелер:
- St. Petersburg State University
- Шығарылым: Том 51, № 4 (2018)
- Беттер: 322-326
- Бөлім: Mathematics
- URL: https://journals.rcsi.science/1063-4541/article/view/186130
- DOI: https://doi.org/10.3103/S1063454118040039
- ID: 186130
Дәйексөз келтіру
Аннотация
One of the models of discrete analog of the Rényi problem known as the “parking problem” has been considered. Let n and i be integers, n ≥ 0, and 0 ≤ i ≤ n–1. Open interval (i, i + 1), where i is a random variable taking values 0, 1, 2, …, and n–1 for all n ≥ 2 with equal probability, is placed on interval [0, n]. If n < 2, we say that the interval cannot be placed. After placing the first interval, two free intervals [0, i] and [i + 1, n] are formed, which are filled with intervals of unit length according to the same rule, independently of each other, etc. When the filling of [0, n] with unit intervals is completed, the distance between any two neighboring intervals does not exceed 1. Let Xn be the number of placed intervals. This paper analyzes the asymptotic behavior of moments of random variable Xn. Unlike the classical case, exact expressions for the first moments can be found.
Негізгі сөздер
Авторлар туралы
S. Ananjevskii
St. Petersburg State University
Хат алмасуға жауапты Автор.
Email: ananjevskii@mail.ru
Ресей, St. Petersburg, 199034
N. Kryukov
St. Petersburg State University
Email: ananjevskii@mail.ru
Ресей, St. Petersburg, 199034
Қосымша файлдар
