The Problem of Selfish Parking
- Авторы: Ananjevskii S.M.1, Kryukov N.A.1
-
Учреждения:
- St. Petersburg State University
- Выпуск: Том 51, № 4 (2018)
- Страницы: 322-326
- Раздел: Mathematics
- URL: https://journals.rcsi.science/1063-4541/article/view/186130
- DOI: https://doi.org/10.3103/S1063454118040039
- ID: 186130
Цитировать
Аннотация
One of the models of discrete analog of the Rényi problem known as the “parking problem” has been considered. Let n and i be integers, n ≥ 0, and 0 ≤ i ≤ n–1. Open interval (i, i + 1), where i is a random variable taking values 0, 1, 2, …, and n–1 for all n ≥ 2 with equal probability, is placed on interval [0, n]. If n < 2, we say that the interval cannot be placed. After placing the first interval, two free intervals [0, i] and [i + 1, n] are formed, which are filled with intervals of unit length according to the same rule, independently of each other, etc. When the filling of [0, n] with unit intervals is completed, the distance between any two neighboring intervals does not exceed 1. Let Xn be the number of placed intervals. This paper analyzes the asymptotic behavior of moments of random variable Xn. Unlike the classical case, exact expressions for the first moments can be found.
Ключевые слова
Об авторах
S. Ananjevskii
St. Petersburg State University
Автор, ответственный за переписку.
Email: ananjevskii@mail.ru
Россия, St. Petersburg, 199034
N. Kryukov
St. Petersburg State University
Email: ananjevskii@mail.ru
Россия, St. Petersburg, 199034
Дополнительные файлы
