Analogue of the Hyodo Inequality for the Ramification Depth in Degree p2 Extensions


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Ramification in complete discrete valuation fields is studied. For the case of a perfect residue field, there is a well-developed theory of ramification groups. Hyodo introduced the concept of ramification depth associated with the different of an extension and obtained an inequality that combines the concept of ramification depth in a degree p2 cyclotomic extension with the concept of ramification depth in a degree p subextension. The paper gives a detailed consideration of the structure of degree p2 extensions that can be obtained by a composite of two degree p extensions. In this case, it is not required that the residue field be perfect. Using the concepts of wild and ferocious extensions and the defect of the main unit, degree p2 extensions are classified and more accurate estimates for the ramification depth are obtained. In a number of cases, exact formulas for ramification depth are presented.

Негізгі сөздер

Авторлар туралы

S. Vostokov

St. Petersburg State University

Хат алмасуға жауапты Автор.
Email: sergei.vostokov@gmail.com
Ресей, St. Petersburg, 199034

N. Haustov

OOO Luxoft Professional

Email: sergei.vostokov@gmail.com
Ресей, St. Petersburg, 195027

I. Zhukov

St. Petersburg State University

Email: sergei.vostokov@gmail.com
Ресей, St. Petersburg, 199034

O. Ivanova

St. Petersburg State University of Aerospace Instrumentation

Email: sergei.vostokov@gmail.com
Ресей, St. Petersburg, 190000

S. Afanas’eva

St. Petersburg State University

Email: sergei.vostokov@gmail.com
Ресей, St. Petersburg, 199034

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2018