Analogue of the Hyodo Inequality for the Ramification Depth in Degree p2 Extensions


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Ramification in complete discrete valuation fields is studied. For the case of a perfect residue field, there is a well-developed theory of ramification groups. Hyodo introduced the concept of ramification depth associated with the different of an extension and obtained an inequality that combines the concept of ramification depth in a degree p2 cyclotomic extension with the concept of ramification depth in a degree p subextension. The paper gives a detailed consideration of the structure of degree p2 extensions that can be obtained by a composite of two degree p extensions. In this case, it is not required that the residue field be perfect. Using the concepts of wild and ferocious extensions and the defect of the main unit, degree p2 extensions are classified and more accurate estimates for the ramification depth are obtained. In a number of cases, exact formulas for ramification depth are presented.

作者简介

S. Vostokov

St. Petersburg State University

编辑信件的主要联系方式.
Email: sergei.vostokov@gmail.com
俄罗斯联邦, St. Petersburg, 199034

N. Haustov

OOO Luxoft Professional

Email: sergei.vostokov@gmail.com
俄罗斯联邦, St. Petersburg, 195027

I. Zhukov

St. Petersburg State University

Email: sergei.vostokov@gmail.com
俄罗斯联邦, St. Petersburg, 199034

O. Ivanova

St. Petersburg State University of Aerospace Instrumentation

Email: sergei.vostokov@gmail.com
俄罗斯联邦, St. Petersburg, 190000

S. Afanas’eva

St. Petersburg State University

Email: sergei.vostokov@gmail.com
俄罗斯联邦, St. Petersburg, 199034

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2018