NP completeness conditions for verifying the consistency of several kinds of systems of linear diophantine discongruences


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We propose two series of number-theory problems with explicitly marked out parameters related to discongruences modulo m. We find parameter constraints that provide the NP completeness for any problem of every series. For any m > 2, we prove the NP completeness of the verification problem for the consistency of a system of linear discongruences modulo m such that any discongruence contains exactly three variables, including the case where its coefficients belong to {–1, 1}. For any m > 3, we prove the NP completeness of the verification problem for the consistency of a system of linear discongruences modulo m such that any discongruence contains exactly 2 variables. If P ≠ NP, then one cannot change the term 2-discongruence for the term 1-discongruence in the statements of the proven theorems.

Sobre autores

N. Kosovskii

St. Petersburg State University

Autor responsável pela correspondência
Email: kosov@nk1022.spb.edu
Rússia, Universitetskaya nab. 7–9, St. Petersburg, 199034

T. Kosovskaya

St. Petersburg State University

Email: kosov@nk1022.spb.edu
Rússia, Universitetskaya nab. 7–9, St. Petersburg, 199034

N. Kosovskii

St. Petersburg State University

Email: kosov@nk1022.spb.edu
Rússia, Universitetskaya nab. 7–9, St. Petersburg, 199034

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2016