NP completeness conditions for verifying the consistency of several kinds of systems of linear diophantine discongruences


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We propose two series of number-theory problems with explicitly marked out parameters related to discongruences modulo m. We find parameter constraints that provide the NP completeness for any problem of every series. For any m > 2, we prove the NP completeness of the verification problem for the consistency of a system of linear discongruences modulo m such that any discongruence contains exactly three variables, including the case where its coefficients belong to {–1, 1}. For any m > 3, we prove the NP completeness of the verification problem for the consistency of a system of linear discongruences modulo m such that any discongruence contains exactly 2 variables. If P ≠ NP, then one cannot change the term 2-discongruence for the term 1-discongruence in the statements of the proven theorems.

Авторлар туралы

N. Kosovskii

St. Petersburg State University

Хат алмасуға жауапты Автор.
Email: kosov@nk1022.spb.edu
Ресей, Universitetskaya nab. 7–9, St. Petersburg, 199034

T. Kosovskaya

St. Petersburg State University

Email: kosov@nk1022.spb.edu
Ресей, Universitetskaya nab. 7–9, St. Petersburg, 199034

N. Kosovskii

St. Petersburg State University

Email: kosov@nk1022.spb.edu
Ресей, Universitetskaya nab. 7–9, St. Petersburg, 199034

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2016