On one complement to the Hölder inequality: I


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let m ≥ 2, the numbers p1,…, pm ∈ (1, +∞] satisfy the inequality \(\frac{1}{{{p_1}}} + ...\frac{1}{{{p_m}}} < 1\), and γ1 ∈ Lp1(ℝ1), …, γm\({L^{{p_m}}}\)(ℝ1). We prove that, if the set of “resonance” points of each of these functions is nonempty and the “nonresonance” condition holds (both concepts have been introduced by the author for functions of spaces Lp(ℝ1), p ∈ (1, +∞]), we have the inequality \(\mathop {\sup }\limits_{a,b \in {R^1}} \left| {\int\limits_a^b {\prod\limits_{k = 1}^m {\left[ {{\gamma _k}\left( \tau \right) + \Delta {\gamma _k}\left( \tau \right)} \right]} d\tau } } \right| \leqslant C{\prod\limits_{k = 1}^m {\left\| {{\gamma _k} + \Delta {\gamma _k}} \right\|} _{L_{{a_k}}^{{p_k}}}}\left( {{\mathbb{R}^1}} \right)\), where the constant C > 0 is independent of functions \(\Delta {\gamma _k} \in L_{{a_k}}^{{p_k}}\left( {{\mathbb{R}^1}} \right)\) and \(L_{{a_k}}^{{p_k}}\left( {{\mathbb{R}^1}} \right) \subset {L^{{p_k}}}\left( {{\mathbb{R}^1}} \right)\), 1 ≤ km are some specially constructed normed spaces. In addition, we give a boundedness condition for the integral of the product of functions over a subset of ℝ1.

关键词

作者简介

B. Ivanov

St. Petersburg State University of Industrial Technologies and Design

编辑信件的主要联系方式.
Email: ivanov-bf@yandex.ru
俄罗斯联邦, St. Petersburg, 198095

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2017