On one complement to the Hölder inequality: I
- 作者: Ivanov B.F.1
-
隶属关系:
- St. Petersburg State University of Industrial Technologies and Design
- 期: 卷 50, 编号 3 (2017)
- 页面: 265-273
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1063-4541/article/view/185816
- DOI: https://doi.org/10.3103/S1063454117030086
- ID: 185816
如何引用文章
详细
Let m ≥ 2, the numbers p1,…, pm ∈ (1, +∞] satisfy the inequality \(\frac{1}{{{p_1}}} + ...\frac{1}{{{p_m}}} < 1\), and γ1 ∈ Lp1(ℝ1), …, γm ∈ \({L^{{p_m}}}\)(ℝ1). We prove that, if the set of “resonance” points of each of these functions is nonempty and the “nonresonance” condition holds (both concepts have been introduced by the author for functions of spaces Lp(ℝ1), p ∈ (1, +∞]), we have the inequality \(\mathop {\sup }\limits_{a,b \in {R^1}} \left| {\int\limits_a^b {\prod\limits_{k = 1}^m {\left[ {{\gamma _k}\left( \tau \right) + \Delta {\gamma _k}\left( \tau \right)} \right]} d\tau } } \right| \leqslant C{\prod\limits_{k = 1}^m {\left\| {{\gamma _k} + \Delta {\gamma _k}} \right\|} _{L_{{a_k}}^{{p_k}}}}\left( {{\mathbb{R}^1}} \right)\), where the constant C > 0 is independent of functions \(\Delta {\gamma _k} \in L_{{a_k}}^{{p_k}}\left( {{\mathbb{R}^1}} \right)\) and \(L_{{a_k}}^{{p_k}}\left( {{\mathbb{R}^1}} \right) \subset {L^{{p_k}}}\left( {{\mathbb{R}^1}} \right)\), 1 ≤ k ≤ m are some specially constructed normed spaces. In addition, we give a boundedness condition for the integral of the product of functions over a subset of ℝ1.
作者简介
B. Ivanov
St. Petersburg State University of Industrial Technologies and Design
编辑信件的主要联系方式.
Email: ivanov-bf@yandex.ru
俄罗斯联邦, St. Petersburg, 198095
补充文件
