On one complement to the Hölder inequality: I
- Авторы: Ivanov B.F.1
-
Учреждения:
- St. Petersburg State University of Industrial Technologies and Design
- Выпуск: Том 50, № 3 (2017)
- Страницы: 265-273
- Раздел: Mathematics
- URL: https://journals.rcsi.science/1063-4541/article/view/185816
- DOI: https://doi.org/10.3103/S1063454117030086
- ID: 185816
Цитировать
Аннотация
Let m ≥ 2, the numbers p1,…, pm ∈ (1, +∞] satisfy the inequality \(\frac{1}{{{p_1}}} + ...\frac{1}{{{p_m}}} < 1\), and γ1 ∈ Lp1(ℝ1), …, γm ∈ \({L^{{p_m}}}\)(ℝ1). We prove that, if the set of “resonance” points of each of these functions is nonempty and the “nonresonance” condition holds (both concepts have been introduced by the author for functions of spaces Lp(ℝ1), p ∈ (1, +∞]), we have the inequality \(\mathop {\sup }\limits_{a,b \in {R^1}} \left| {\int\limits_a^b {\prod\limits_{k = 1}^m {\left[ {{\gamma _k}\left( \tau \right) + \Delta {\gamma _k}\left( \tau \right)} \right]} d\tau } } \right| \leqslant C{\prod\limits_{k = 1}^m {\left\| {{\gamma _k} + \Delta {\gamma _k}} \right\|} _{L_{{a_k}}^{{p_k}}}}\left( {{\mathbb{R}^1}} \right)\), where the constant C > 0 is independent of functions \(\Delta {\gamma _k} \in L_{{a_k}}^{{p_k}}\left( {{\mathbb{R}^1}} \right)\) and \(L_{{a_k}}^{{p_k}}\left( {{\mathbb{R}^1}} \right) \subset {L^{{p_k}}}\left( {{\mathbb{R}^1}} \right)\), 1 ≤ k ≤ m are some specially constructed normed spaces. In addition, we give a boundedness condition for the integral of the product of functions over a subset of ℝ1.
Ключевые слова
Об авторах
B. Ivanov
St. Petersburg State University of Industrial Technologies and Design
Автор, ответственный за переписку.
Email: ivanov-bf@yandex.ru
Россия, St. Petersburg, 198095
Дополнительные файлы
