On the representation of the gravitational potential of several model bodies


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A Laplace series of spherical harmonics Yn(θ, λ) is the most common representation of the gravitational potential for a compact body T in outer space in spherical coordinates r, θ, λ. The Chebyshev norm estimate (the maximum modulus of the function on the sphere) is known for bodies of an irregular structure:〈Yn〉 ≤ Cn–5/2, C = const, n ≥ 1. In this paper, an explicit expression of Yn(θ, λ) for several model bodies is obtained. In all cases (except for one), the estimate 〈Yn〉 holds under the exact exponent 5/2. In one case, where the body T touches the sphere that envelops it,〈Yn〉 decreases much faster, viz.,〈Yn〉 ≤ Cn–5/2pn, C = const, n ≥ 1. The quantity p < 1 equals the distance from the origin of coordinates to the edge of the surface T expressed in enveloping sphere radii. In the general case, the exactness of the exponent 5/2 is confirmed by examples of bodies that more or less resemble real celestial bodies [16, Fig. 6].

作者简介

E. Kuznetsov

Ural Federal University

编辑信件的主要联系方式.
Email: eduard.kuznetsov@urfu.ru
俄罗斯联邦, ul. Mira 19, Ekaterinburg, 620002

K. Kholshevnikov

St. Petersburg State University; Institute of Applied Astronomy

Email: eduard.kuznetsov@urfu.ru
俄罗斯联邦, Universitetskaya nab. 7–9, St. Petersburg, 199034; nab. Kutuzova 10, St. Petersburg, 191187

V. Shaidulin

St. Petersburg State University; Institute of Applied Astronomy; Main (Pulkovo) Astronomical Observatory

Email: eduard.kuznetsov@urfu.ru
俄罗斯联邦, Universitetskaya nab. 7–9, St. Petersburg, 199034; nab. Kutuzova 10, St. Petersburg, 191187; Pulkovskoe sh. 65/1, St. Petersburg, 196140

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2016