On the representation of the gravitational potential of several model bodies
- Autores: Kuznetsov E.D.1, Kholshevnikov K.V.2,3, Shaidulin V.S.2,3,4
-
Afiliações:
- Ural Federal University
- St. Petersburg State University
- Institute of Applied Astronomy
- Main (Pulkovo) Astronomical Observatory
- Edição: Volume 49, Nº 3 (2016)
- Páginas: 290-298
- Seção: Astronomy
- URL: https://journals.rcsi.science/1063-4541/article/view/185576
- DOI: https://doi.org/10.3103/S1063454116030079
- ID: 185576
Citar
Resumo
A Laplace series of spherical harmonics Yn(θ, λ) is the most common representation of the gravitational potential for a compact body T in outer space in spherical coordinates r, θ, λ. The Chebyshev norm estimate (the maximum modulus of the function on the sphere) is known for bodies of an irregular structure:〈Yn〉 ≤ Cn–5/2, C = const, n ≥ 1. In this paper, an explicit expression of Yn(θ, λ) for several model bodies is obtained. In all cases (except for one), the estimate 〈Yn〉 holds under the exact exponent 5/2. In one case, where the body T touches the sphere that envelops it,〈Yn〉 decreases much faster, viz.,〈Yn〉 ≤ Cn–5/2pn, C = const, n ≥ 1. The quantity p < 1 equals the distance from the origin of coordinates to the edge of the surface T expressed in enveloping sphere radii. In the general case, the exactness of the exponent 5/2 is confirmed by examples of bodies that more or less resemble real celestial bodies [16, Fig. 6].
Palavras-chave
Sobre autores
E. Kuznetsov
Ural Federal University
Autor responsável pela correspondência
Email: eduard.kuznetsov@urfu.ru
Rússia, ul. Mira 19, Ekaterinburg, 620002
K. Kholshevnikov
St. Petersburg State University; Institute of Applied Astronomy
Email: eduard.kuznetsov@urfu.ru
Rússia, Universitetskaya nab. 7–9, St. Petersburg, 199034; nab. Kutuzova 10, St. Petersburg, 191187
V. Shaidulin
St. Petersburg State University; Institute of Applied Astronomy; Main (Pulkovo) Astronomical Observatory
Email: eduard.kuznetsov@urfu.ru
Rússia, Universitetskaya nab. 7–9, St. Petersburg, 199034; nab. Kutuzova 10, St. Petersburg, 191187; Pulkovskoe sh. 65/1, St. Petersburg, 196140
Arquivos suplementares
