Degeneration of the Hilbert pairing in formal groups over local fields


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

For an arbitrary local field K (a finite extension of the field Qp) and an arbitrary formal group law F over K, we consider an analog cF of the classical Hilbert pairing. A theorem by S.V. Vostokov and I.B. Fesenko says that if the pairing cF has a certain fundamental symbol property for all Lubin–Tate formal groups, then cF = 0. We generalize the theorem of Vostokov–Fesenko to a wider class of formal groups. Our first result concerns formal groups that are defined over the ring OK of integers of K and have a fixed ring O0 of endomorphisms, where O0 is a subring of OK. We prove that if the symbol cF has the above-mentioned symbol property, then cF = 0. Our second result strengthens the first one in the case of Honda formal groups. The paper consists of three sections. After a short introduction in Section 1, we recall basic definitions and facts concerning formal group laws in Section 2. In Section 3, we state and prove two main results of the paper (Theorems 1 and 2). Refs. 8.

Негізгі сөздер

Авторлар туралы

S. Vostokov

St. Petersburg State University

Хат алмасуға жауапты Автор.
Email: s.vostokov@spbu.ru
Ресей, Universitetskaya nab., 7–9, St. Petersburg, 199034

R. Vostokova

Baltic State Technical University “VOENMEKH,”

Хат алмасуға жауапты Автор.
Email: rvostokova@yandex.ru
Ресей, 1-Krasnoarmeyskaya ul., 1, St. Petersburg, 190005

O. Podkopaeva

St. Petersburg State University

Email: rvostokova@yandex.ru
Ресей, Universitetskaya nab., 7–9, St. Petersburg, 199034

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2016