Degeneration of the Hilbert pairing in formal groups over local fields


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For an arbitrary local field K (a finite extension of the field Qp) and an arbitrary formal group law F over K, we consider an analog cF of the classical Hilbert pairing. A theorem by S.V. Vostokov and I.B. Fesenko says that if the pairing cF has a certain fundamental symbol property for all Lubin–Tate formal groups, then cF = 0. We generalize the theorem of Vostokov–Fesenko to a wider class of formal groups. Our first result concerns formal groups that are defined over the ring OK of integers of K and have a fixed ring O0 of endomorphisms, where O0 is a subring of OK. We prove that if the symbol cF has the above-mentioned symbol property, then cF = 0. Our second result strengthens the first one in the case of Honda formal groups. The paper consists of three sections. After a short introduction in Section 1, we recall basic definitions and facts concerning formal group laws in Section 2. In Section 3, we state and prove two main results of the paper (Theorems 1 and 2). Refs. 8.

作者简介

S. Vostokov

St. Petersburg State University

编辑信件的主要联系方式.
Email: s.vostokov@spbu.ru
俄罗斯联邦, Universitetskaya nab., 7–9, St. Petersburg, 199034

R. Vostokova

Baltic State Technical University “VOENMEKH,”

编辑信件的主要联系方式.
Email: rvostokova@yandex.ru
俄罗斯联邦, 1-Krasnoarmeyskaya ul., 1, St. Petersburg, 190005

O. Podkopaeva

St. Petersburg State University

Email: rvostokova@yandex.ru
俄罗斯联邦, Universitetskaya nab., 7–9, St. Petersburg, 199034

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2016