A Numerical Method for Finding the Optimal Solution of a Differential Inclusion


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In the paper, we study a differential inclusion with a given continuous convex multivalued mapping. For a prescribed finite time interval, it is required to construct a solution to the differential inclusion, which satisfies the prescribed initial and final conditions and minimizes the integral functional. By means of support functions, the original problem is reduced to minimizing some functional in the space of partially continuous functions. When the support function of the multivalued mapping is continuously differentiable with respect to the phase variables, this functional is Gateaux differentiable. In the study, the Gateaux gradient is determined and the necessary conditions for the minimum of the functional are obtained. Based on these conditions, the method of steepest descent is applied to the original problem. The numerical examples illustrate the implementation of the constructed algorithm.

作者简介

A. Fominyh

St. Petersburg State University

编辑信件的主要联系方式.
Email: alexfomster@mail.ru
俄罗斯联邦, St. Petersburg, 199034

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018