A Numerical Method for Finding the Optimal Solution of a Differential Inclusion


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In the paper, we study a differential inclusion with a given continuous convex multivalued mapping. For a prescribed finite time interval, it is required to construct a solution to the differential inclusion, which satisfies the prescribed initial and final conditions and minimizes the integral functional. By means of support functions, the original problem is reduced to minimizing some functional in the space of partially continuous functions. When the support function of the multivalued mapping is continuously differentiable with respect to the phase variables, this functional is Gateaux differentiable. In the study, the Gateaux gradient is determined and the necessary conditions for the minimum of the functional are obtained. Based on these conditions, the method of steepest descent is applied to the original problem. The numerical examples illustrate the implementation of the constructed algorithm.

Авторлар туралы

A. Fominyh

St. Petersburg State University

Хат алмасуға жауапты Автор.
Email: alexfomster@mail.ru
Ресей, St. Petersburg, 199034

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018