Approximation by entire functions on countable unions of segments of the real axis: 2. proof of the main theorem


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this study, we consider an approximation of entire functions of Hölder classes on a countable union of segments by entire functions of exponential type. It is essential that the approximation rate in the neighborhood of segment ends turns out to be higher in the scale that had first appeared in the theory of polynomial approximation by functions of Hölder classes on a segment and made it possible to harmonize the so-called “direct” and “inverse” theorems for that case, i.e., restore the Hölder smoothness by the rate of polynomial approximation in this scale. Approximations by entire functions on a countable union of segments have not been considered earlier. The first section of this paper presents several lemmas and formulates the main theorem. In this study, we prove this theorem on the basis of earlier given lemmas.

Sobre autores

O. Silvanovich

St. Petersburg National Research University of Information Technologies

Autor responsável pela correspondência
Email: olamamik@gmail.com
Rússia, Kronverkskii pr., 49, St. Petersburg, 197101

N. Shirokov

St. Petersburg State University

Email: olamamik@gmail.com
Rússia, St. Petersburg, 199034

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2017