Approximation by entire functions on countable unions of segments of the real axis: 2. proof of the main theorem


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this study, we consider an approximation of entire functions of Hölder classes on a countable union of segments by entire functions of exponential type. It is essential that the approximation rate in the neighborhood of segment ends turns out to be higher in the scale that had first appeared in the theory of polynomial approximation by functions of Hölder classes on a segment and made it possible to harmonize the so-called “direct” and “inverse” theorems for that case, i.e., restore the Hölder smoothness by the rate of polynomial approximation in this scale. Approximations by entire functions on a countable union of segments have not been considered earlier. The first section of this paper presents several lemmas and formulates the main theorem. In this study, we prove this theorem on the basis of earlier given lemmas.

作者简介

O. Silvanovich

St. Petersburg National Research University of Information Technologies

编辑信件的主要联系方式.
Email: olamamik@gmail.com
俄罗斯联邦, Kronverkskii pr., 49, St. Petersburg, 197101

N. Shirokov

St. Petersburg State University

Email: olamamik@gmail.com
俄罗斯联邦, St. Petersburg, 199034

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2017