Asymptotic Behavior of Solutions in Finite-Difference Schemes


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In many problems of numerically solving the Schrödinger equation, it is necessary to choose asymptotic distances that are many times greater than the characteristic size of the region of interaction. If the solutions to one-dimensional equations can be immediately chosen in a form that preserves unitarity, the preservation of probability (in, e.g., the form of optical theorem implementation) is then a real problem for two-dimensional equations. As result of studying the properties of a discretized two-dimensional equation, an additional term is found that does not exceed the sampling error and ensures a high degree of unitarity preservation.

Sobre autores

P. Krassovitskiy

Institute of Nuclear Physics

Autor responsável pela correspondência
Email: pavel.kras@inp.kz
Cazaquistão, Almaty, 050032

F. Pen’kov

Institute of Nuclear Physics

Email: pavel.kras@inp.kz
Cazaquistão, Almaty, 050032

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2018