Asymptotic Behavior of Solutions in Finite-Difference Schemes
- Авторы: Krassovitskiy P.M.1, Pen’kov F.M.1
-
Учреждения:
- Institute of Nuclear Physics
- Выпуск: Том 82, № 10 (2018)
- Страницы: 1315-1319
- Раздел: Article
- URL: https://journals.rcsi.science/1062-8738/article/view/186508
- DOI: https://doi.org/10.3103/S1062873818100167
- ID: 186508
Цитировать
Аннотация
In many problems of numerically solving the Schrödinger equation, it is necessary to choose asymptotic distances that are many times greater than the characteristic size of the region of interaction. If the solutions to one-dimensional equations can be immediately chosen in a form that preserves unitarity, the preservation of probability (in, e.g., the form of optical theorem implementation) is then a real problem for two-dimensional equations. As result of studying the properties of a discretized two-dimensional equation, an additional term is found that does not exceed the sampling error and ensures a high degree of unitarity preservation.
Об авторах
P. Krassovitskiy
Institute of Nuclear Physics
Автор, ответственный за переписку.
Email: pavel.kras@inp.kz
Казахстан, Almaty, 050032
F. Pen’kov
Institute of Nuclear Physics
Email: pavel.kras@inp.kz
Казахстан, Almaty, 050032
Дополнительные файлы
