Numerical solution of plane hydrofracture problem in modified formulation under arbitrary initial conditions
- 作者: Linkov A.M.1,2
-
隶属关系:
- Institute for Problems of Mechanical Engineering
- Saint Petersburg State Politechnic University
- 期: 卷 52, 编号 2 (2016)
- 页面: 265-273
- 栏目: Rock Failure
- URL: https://journals.rcsi.science/1062-7391/article/view/183536
- DOI: https://doi.org/10.1134/S1062739116020394
- ID: 183536
如何引用文章
详细
The solution to a hydraulic fracture problem for the model of Khristianovich–Geertsma–de Klerk is obtained on the basis of the modified formulation of the problem, which, in contrast with the conventional approach, employs the particle velocity rather than the flux. This served to complement the system of ordinary differential equations, resulting after spatial discretization, with the speed equation. The complete system is solved by the Runge–Kutta method for arbitrary initial conditions. The decaying influence of the initial conditions on key characteristics of a fracture (opening and length) at the end of a treatment, is established and numerically analyzed.
作者简介
A. Linkov
Institute for Problems of Mechanical Engineering; Saint Petersburg State Politechnic University
编辑信件的主要联系方式.
Email: voknilal@hotmail.com
俄罗斯联邦, Bol’shoy Pr. V.O. 61, Saint Petersburg, 199178; ul. Politechnicheskaya 29, Saint Peterburg, 195251
补充文件
